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ABSTRACT

Given a simple undirected graph G = (V,E), a γ-set also known as dominating set

is a subset S ⊆ V such that for any vertex v ∈ V , either v ∈ S or a neighbor u of v

is in S. Given G, the size of its γ-set, denoted by γ, is its domination number and

the dominion of G, denoted by ζ, counts the number of its γ-sets. The former is a

well-studied concept while the latter is new. Each parameter accesses the reliability

and the vulnerability of a network system when exposed to attacks. In this thesis,

we introduce basic notions and topology of several graphs. For each such graph, we

found and proved the aforementioned parameters while presenting several activities

with solutions.
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Chapter 1 Introduction

In this chapter, we introduce the reader to graph theory, its history and basic notions.

1.1 History

Graph theory began in 1736 when Leonard Euler published a paper that contained

the solution to the 7 bridges of Konigsberg (see Figure 1.1 left) problem [6]. Is it

possible to take a walk around town crossing each bridge exactly once and wind up

at your starting point? A graph (vertices and links) is used to model or represent

the Konigsberg problem (see Figure 1.1 right). The answer to this problem is “no”.

To help provide a solution to this problem, Euler used a drawing or a model that we

call graphs, that reduces the problem down to its important elements, thus avoiding

unnecessary details. We begin by introducing the basic information about graphs.

Figure 1.1: Konigsberg city and its corresponding graph model

James Sylvester of the 19th century was said to be the first to use the word “graph”

in the context of graph theory, who was one of many mathematicians that were in-

trigued with studying types of diagrams representing molecule [6]. Furthermore, in

the mid-19th century, Francis Guthrie presented the puzzle problem four-color prob-

lem led to the studies of graphs for theoretical and applied interests. The four-color
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problem seeks whether the countries on every map can be colored by using just four

colors in a way that countries sharing an edge have different colors; however, this

question can also be presented if the vertices of a planar graph can always be colored

by using just four colors[7]. Although this problem would not be solved until more

than a century later, it led to further studies within the broad field of graph theory. In

1862, De jaenish experimented to discover the minimum number of queens that can be

placed on the chess board in such a way every square is either occupied by a queen or

being attacked by at least one queen, which deals with domination. Through the work

of solving practical problems in this time period, it made possible to obtain solutions

important to graph theory such as Gustav Kirchhoff’s complete set of equation for

currents and voltages in electric circuits is summed up by representing his equations

by a graph with skeleton tress and with the aid of these representations helped obtain

linearly independent circuit systems. Arthur Cayley arrived at the situation of listing

and describing trees with certain properties by starting from calculating the number

of isomers of saturated hydrocarbons linking graphic theory and other sciences. At

the start of the 20th century, problems including graphs began to appear in physics,

chemistry, electrical engineering, biology, economics, sociology and many other fields

of study. Chemistry was a prominent field that would use lettered vertices to de-

note individual atoms while the lines denoted the chemical bonds with the degree

of the vertices denoting the valence. The studies of connectivity properties, graph

symmetry, and planarity are a few of a number of tools that helped direct the study

of graph theory, which began to appear more frequently in the 1920s and 1930s, and

soon extended throughout the 1940s and 1950s through the development of cyber-

netics and calculation techniques. As the range of problems that graph theory dealt

with increased, so did the interest of graph theory; in addition, electronics computers

became more useful with handling practical problems containing complex equations,

leading to more discoveries using graphic theory. Methods were established to solve

external problems, such as the construction of the maximum flow across a network,

which could clearly be solved through graphs (tree and planar graphs) rather than

arbitrary graphs. Problems in Graph theory could be less structured and free flowing
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(combinatorial) while others were more (geometric) structured. Problems such as

graph circuits and graph imbedding were geometric in nature [6]. Other problems

concerned with the modes of classification of graph such as classification by the prop-

erties of partitions of them. The results of these problems involving the existence of

these graphs with certain properties can be shown by representing numbers by the

degrees of the vertices of a given graph: “a collection of integers 0 < d1 < . . . < dn, the

sum of which is even”, can be understood by the degrees of the vertices of a graph not

containing any loops and multiple edges. Problems questioning the enumeration of

graphs with prescribed properties can be represented by problems of non-isomorphic

graphs that contain the same number of vertices and/or edges.

Graphic Theory can be used to deal with problems pertaining to the connectivity

of graphs and to study the structure of graphs based off of the connectivity of graphs;

Analysis of the reliability of electronic circuits or communication networks raise the

problem of solving the amount of non-intersecting edges that connect vertices within

a graph [7]. The result of this problem yielded that the least number of vertices sepa-

rating two non-adjacent vertices are equal to the greatest number of non-intersecting

simple edges that connect this pair of vertices. Algorithms were developed to establish

the degree of connectivity for of graphs. Other studies of graphs consisted of find-

ing the number of edge progressions that include all the vertices or all the edges the

graph; through multiple observations the resulting criteria is that a connected graph

a cycle containing all the edges and passing through each edge once and only once

exists if and only if the degrees of all except two vertices of the graph are even. If the

set of vertices of a graph is traversed, only a number of sufficient conditions for the

existence of a cycle passing through each vertex once is available. In all, results and

methods of graph theory have been used extensively to aid in solving transportation

problems, find optimal solutions for planning and control of project developments,

establishing the best routes for supply of goods, and modeling complex technological

processes in the creation of wide varieties of discrete situations.

The term graph in this branch of mathematics does not concern data charts such

as line graphs or bars graphs yet involves a set of points (vertex) that are joined by
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lines that can be called edges[6]. A graph containing at most one edge between any

two points without any loops is called a simple graph; if stated otherwise, the term

graph is to be assumed to be a simple graph. When two points are connected by two

or more edges, the graph is described as a multigraph. A complete graph is graph

where every point contained in that graph is connected by and edge to every other

point. In some cases, direction can be assigned to each edge to produce a graph called

a directed graph or digraph. Other important basic concepts of graph theory are a

point’s degree and the types of path [6]. Each vertex has a number associated with

it called its degree, which is the number of edges that are connected to it; a loop

contributes 2 to the degree of the vertex. The number of vertices in a complete graph

classifies its nature, therefore complete graphs are commonly denoted by Kn, where

n refers to the number of vertices, and all vertices of Kn have a degree of n−1. With

this information, Euler’s theorem pertaining to Konigsberg bridge Problem could be

translated in modern terms as: if there is a path along edges of a multigraph, that

travels along each edge only once, then there exists at most two vertices of odd degree;

additionally, if the path begins and ends at the same vertex, then no vertices will have

an odd degree. A path is described as the route of the edges of the graph; a path

can follow one edge between two points or follow multiple edges through multiple

points. When a path connects any two vertices in a graph, the graph is connected;

furthermore, when a path begins at a point and ends at that same point without

crossing any edge more than once is called a circuit. In 1750 Euler discovered the

polyhedral formula V − E + F = 2, where the equation relates to the number of

vertices (V ), edges (E), and Face (F ) of a polyhedron; the vertices and edges of this

solid forms a graph leading to how graphs can be formulated on other surfaces.

Finally, graph theory and topology history are closely related and share common

problems and techniques and the similarities between both topics led to a subsection

named topological graph theory [6]. One problem in this area is called planar graphs,

which are dotted graphs with edges on a plane no edges intersect.
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1.2 Basic Definitions

A simple graph G = (V,E) consists of V = V (G), a nonempty set of objects called

vertices (or nodes) and E = E(G), a set of an unordered pair of distinct vertices

called edges.

Figure 1.2: Example of a simple graph on 6 vertices

See Figure 1.2, for example. Vertices, say u and v that share an endpoint are said

to be adjacent; u is also said to be a neighbor of v and vice-versa the edge denoted

by uv is said to be incident to the vertices u and v. The order of the graph G is the

size of its vertex set which we denote by |V | and the size of the edge set, denoted by

|E|, is called size of the graph G. The degree of vertex, v denoted by deg(v), is the

number of edges incident to v ; that is the size of its neighbor. A vertex of degree 0 is

said to be isolated while a vertex of degree 1 is called a leaf. The minimum degree

of G, denoted by δ(G), is its smallest vertex degree, and the maximum degree of

G denoted by ∆(G) is the largest degree among its vertices. A vertex u is said to be

connected to a vertex v, in a graph G, if there exists a sequence of edges (or path)

from u to v in G. A graph G is connected if there is a path that connects every two

of its vertices. There are other types of graphs such as multigraphs (when multiple

edges are allowed between vertices), pseudographs (when a vertex is allowed to be

connected to itself, as in a loop) and directed graphs (when each edge is given an

orientation, using an arrow). However, our thesis will focus only on simple graphs,

as previously defined.
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In Chapter 2, we define and introduce some fundamental properties of nine graphs;

one of them is new. In Chapter 3, we introduce the notions of dominion and dom-

ination with several examples, activities with solutions that can be introduced at a

high school level. Further, in Chapter 4, we present several results on dominion and

domination values of the nine graphs introduced in Chapter 2. We close this thesis

in Chapter 5 with several useful directions and open problems.

6



Chapter 2 Topological Properties of Some Graphs

In this chapter, we present some basic graph properties, after we define them. We

give seven such properties for seven common graphs on n ≥ 2 vertices.

2.1 Definitions

Suppose G is a simple graph and v ∈ V (G). The distance between two vertices u, v ∈

V (G), often denoted by dG(u, v), is the length (number of edges) of their shortest

path in G; this is also known as a geodesic distance. Given v, the eccentricity

of v, written as ε(v) is the maximum of the distance to any vertex in the graph,

i.e., ε(v) = max
u∈V
{dG(v, u)}. Further, the diameter, d of a graph is the maximum

eccentricity of any vertex in the graph. In other words, the diameter is the longest

distance between any two vertices in the graph. So, d = max
v∈V

ε(v). The radius,

r of a graph is the minimum eccentricity among all vertices in the graph in which

case r = min
v∈V

ε(v). These parameters are very useful in classifying acyclic (tree-like)

graphs. Figure 2.1 shows two trees with the same radius but different diameters.

Likewise, for cyclic graphs, we define the following: the length of its shortest cycle

is its girth, g, while the length of its longest cycle is its circumference which we

denote by c. Note that, if a graph G is acyclic, then g(G) = c(G) = ∞ and if G is

disconnected then r(G) =∞.
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Figure 2.1: Diameters of two trees of radius 2

2.2 Topological Properties of Some Graphs

here, we discuss nine different graphs, which come from well-known classes of graphs.

For each graph, we present their seven (7) topological properties, after their definition.

We list these properties as they obviously stem from the definition. Hence, no proof

or additional statements is necessary.

2.2.1 Complete graphs

A complete graph also known as cliques on n vertices, denoted by Kn is a graph

where every pair of vertices are adjacent. Below is a family of complete graphs, K2,

K3, K4, and K5 (from left to right).

Figure 2.2: A family of four complete graphs

Topological Properties:

Given a complete graph on n ≥ 2, we have

1. size (number of edges):
(
n

2

)
=
n(n− 1)

2
, n ≥ 2

8



2. δ (minimum degree): n− 1

3. ∆ (maximum degree): n− 1

4. r (radius): 1

5. d (diameter): 1

6. g (girth): 3

7. c (circumference): n

2.2.2 Cycles

A cycle on n vertices, denoted by Cn is a graph with exactly one closed path. Here

is a C5, a cycle on 5 vertices.

Figure 2.3: A Cycle on 5 vertices

Topological Properties:

For n ≥ 3, we have

1. size (number of edges): n

2. δ (minimum degree): n− 1

3. ∆ (maximum degree): n− 1

4. r (radius): bn
2
c

5. d (diameter): bn
2
c

6. g (girth): n

7. c (circumference): n

9



2.2.3 Trees

A tree also known as an acyclic graph on n vertices, denoted by Tn is a graph with

no cycle. Figure 2.4 is an example of a tree on 6 vertices.

Figure 2.4: A tree on 6 vertices

Because trees are made of finitely many non-isomorphic members, we consider

only one of of its members: the stars. See Figure 2.5 as an example of a Star on 8

vertices. Thus, a star graph on n vertices is simply a central vertex that is connected

to n− 1 leaves.

Figure 2.5: A Star on 8 vertices

Topological Properties:

Given a star graph on n ≥ 2 vertices, we have

1. size (number of edges): n− 1

2. δ (minimum degree): 1

3. ∆ (maximum degree): n− 1

4. r (radius): 2

5. d (diameter): 2

6. g (girth): ∞

7. c (circumference): ∞
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2.2.4 2-trees

As a generalization of a tree, a k-tree is a graph which arises from a k-clique by

0 or more iterations of adding n new vertices, each joined to a k-clique in the old

graph; This process generates finitely many non-isomorphic k-trees. When k ≥ 2, are

shown to be useful in constructing reliable network in [2]. When k = 2, we consider

a particular 2-tree is also known as a Fan. Figure 2.6 is an example of a Fan on 5

vertices.

Figure 2.6: A Fan graph

Topological Properties:

Given a Fan on n ≥ 3 vertices, we have

1. size (number of edges): 2(n− 1)− 1 = 2n− 3

2. δ (minimum degree): 2

3. ∆ (maximum degree): n− 1

4. r (radius): 2

5. d (diameter): n− 2

6. g (girth): 3

7. c (circumference): n

2.2.5 Wheel

A Wheel on n vertices, denoted by Wn, is cycle on n − 1 joined to a central vertex,

say w, and every vertex of the cycle is connected to w. The vertex w is sometimes

referred to as hub. Figure 2.7 is an example of family of three Wheels.

11



Figure 2.7: A family of three Wheels: W4, W5, W6

Topological Properties:

Given a wheel on n ≥ 4 vertices, we have

1. size (number of edges): 2(n− 1)

2. δ (minimum degree): 3

3. ∆ (maximum degree): n− 1

4. r (radius): 2

5. d (diameter): bn
2
c

6. g (girth): 3

7. c (circumference): n− 1

2.2.6 Barbell

The n-barbell graph is the simple graph obtained by connecting two copies of a

complete graph Kn by a bridge. Figure 2.8 is an example of 5-barbell on 10 vertices.

Figure 2.8: a 5-barbell

Topological Properties:

12



For n ≥ 2, we have

1. size (number of edges): 2

(
n

2

)
+ 1 = n(n− 1) + 1

2. δ (minimum degree): 1

3. ∆ (maximum degree): n− 1

4. r (radius): 3

5. d (diameter): 3

6. g (girth): 3

7. c (circumference): n

2.2.7 Generalized Barbell

The (m,n)-barbell graph is a generalization of an n-barbell by connecting two com-

plete graphs Kn and Km by a bridge, for m, g ≥ 2.

Topological Properties:

For 2 ≤ n ≤ m, we have

1. size (number of edges):
(
n

2

)
+

(
m

2

)
2. δ (minimum degree): 1

3. ∆ (maximum degree): n− 1

4. r (radius): 3

5. d (diameter): 3

6. g (girth): 3

7. c (circumference): m

13



2.2.8 Complete bipartite graphs

A simple graph G = (V,E) is called bipartite if its vertex set be divided into two

disjoint groups, with edges connecting vertices from one group to the other; no edge

connects vertices within the same group. We note that when each vertex from one

group is connected to each vertex from the group, the resulting bipartite graph is said

to complete; we write K(m,n) where m, n, are the sizes of the two groups. Below

is complete bipartite graph K3,2 on 3 + 2 = 5 vertices. We also note that K(m, 1) is

isomorphic a Star graph as discussed.

Figure 2.9: A complete bipartite graph with parts sizes 3 and 2

Topological Properties:

Given a complete bipartite graph K(m,n) of order (number of vertices) m + n,

with 1 ≤ n ≤ m, we have

1. size (number of edges): mn

2. δ (minimum degree): n

3. ∆ (maximum degree): m

4. r (radius): 1

5. d (diameter): 2

6. g (girth):

g =

 ∞ n = 1,m ≥ 2

4 2 ≤ n ≤ m

14



7. c (circumference):

c =

 ∞ n = 1,m ≥ 2

n 2 ≤ n ≤ m

2.2.9 Complete Multipartite graphs

A complete k-partite, G = K(m1,m2, . . . ,mk), is an extension of a complete bipartite

with k ≥ 2 disjoint parts, each of sizes m1,m2, . . . ,mk. So, when k = 2, G is complete

2-partite also known as a complete bipartite graph and when k = 3, G is complete

3-partite also known as a complete tripartite. Figure 2.10 is a complete tripartite

K(5, 3, 2).

Figure 2.10: A complete 3-partite graph

Topological Properties:

For each mi ≥ 1, with 2 ≤ i ≤ k, we have

1. size (number of edges):
k∏

i=1

mi

2. δ (minimum degree): inf
i
{mi}

3. ∆ (maximum degree): sup
i
{mi}

4. r (radius): 1

5. d (diameter): 1

6. g (girth):

g =

 ∞ n = 1,m ≥ 2

4 2 ≤ n ≤ m

15



7. c (circumference): varies

We think the last property (circumference) of complete multipartite graphs can sim-

plified down to 3-4 cases, but it will require some proof which we are prepared to give

in this thesis. For this reason, we leave it to reader or future researchers to explore

it.
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Chapter 3 Introduction to Domination and Dominion

In this chapter, we introduce the reader to the notion of domination and dominion

with some examples. The latter is a newly developed concept.

3.1 Definitions

3.1.1 γ-set

Let A and B be two discrete sets. We define the mapping f : A → B with f(x) :=

x ∼ y, whenever x ∈ A and y ∈ B are adjacent. The set A is said to dominates the

set B ⇐⇒ ∀ y ∈ B, ∃ x ∈ A s.t. f(x) = xy. In which case, f is a surjection. If the

set A dominates the set B and |A| ≤ |B|, then |A| is called a domination number.

Suppose G = (V,E) is a simple graph and let A ⊆ V (G). |A| is a domination

number of G if:

1. A is a dominating set of G

2. |A| ≤ |B| for every dominating set B ⊆ V (G)

It is customary to denote the domination number of A, with γ = |A|. Clearly,

a graph G can have multiple dominating sets. For simplicity, we refer to such sets,

γ-sets. Figure 3.1 is an example of a graph (Peterson) where γ = 3. Observe that

the vertex 3 dominates the vertices in the set {0, 5, 7}. The vertex 9 dominates the

vertices in the set {2, 4, 7} and vertex 6 dominates the vertices in the set {8, 1, 7}.

Thus, all vertices in G \ {3, 6, 9} are covered.

Since a γ-set may not be unique for a given graph, this leads to the following

natural question: How many γ-sets does a graph has?–To answer this question, we

introduce the notion of dominion.
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Figure 3.1: Peterson Graph with a dominating set {3, 6, 9}

3.1.2 Dominion

The dominion (number) of a graph G, denoted by ζ is the number of its γ-sets. In

other words, ζ := |{A : A ⊆ V (G), |A| = γ}|. For instance, for a path G on n = 2

vertices, ζ(G) = 2 since each endpoint or leave forms a γ-set. We provide additional

examples for paths on n vertices, with 2 ≤ n ≤ 12 in Example 3.1.4. Further, in

order to track the values of the two previously defined parameters, given a sequence

of families of graphs, we introduce the next concepts.

3.1.3 Special sequences

Given G = Gn, a graph on n ≥ 1 vertices, the sequence of domination numbers,

{γ(G1), γ(G2), γ(G3), . . . , γ(Gn)} is called a γ-spectrum of G. Likewise, the se-

quence of dominion numbers, {ζ(G1), ζ(G2), ζ(G3), . . . , ζ(Gn)} is called a ζ-spectrum

of G. For example, given a family of paths on n vertices, with 2 ≤ n ≤ 12 as shown

in Example 3.1.4, the γ-spectrum is

{1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4}

and the ζ-spectrum is

{2, 1, 4, 3, 1, 8, 4, 1, 13, 5, 1}.
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It is clear from the values for each spectrum that, there is a general formula for the

γ-spectrum sequence which is bn
3
c, for n ≥ 2. However, the a general formula for the

ζ-spectrum sequence is unclear and we do not know it.

3.1.4 Examples: Paths on n-vertices with 2 ≤ n ≤ 12.

A path of length n, denoted by Pn, is a graph that has exactly 2 leaves and every

other vertex is of degree 2. Below is an example of a P3.

Figure 3.2: A Path on 3 vertices

Throughout this example, we assume G = Pn is a path on n vertices and xi−xi+1

indicates that the vertices xi and xi+1 of G are adjacent, for some 1 ≤ i ≤ 11. We

note that it is much harder to determine the ζ-spectrum values for a general path of

any length n.

• n = 2: x1 − x2

γ sets: {x1}, {x2}.

So, when G = P2, we have γ(G) = 1 and ζ(G) = 2

• n = 3: x1 − x2 − x3

γ sets: {x2}.

So, when G = P3, we have γ(G) = 1 and ζ(G) = 1

• n = 4: x1 − x2 − x3 − x4

γ sets: {x1, x3}. {x1, x4}, {x2, x4}, {x2, x3}

So, when G = P4, we have γ(G)= 2 and ζ(G)= 4

• n = 5: x1 − x2 − x3 − x4 − x5

γ sets: {x1, x4}, {x2, x4}, {x2, x5}

So, when G = P5, we have γ(G)= 2 and ζ(G)= 3
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• n = 6: x1 − x2 − x3 − x4 − x5 − x6

γ sets: {x2, x5}

So, when G = P6, we have γ(G)= 2 and ζ(G)= 1

• n = 7: x1 − x2 − x3 − x4 − x5 − x6 − x7

γ sets: {x1, x3, x6}. {x1, x4, x6}, {x1, x4, x7}, {x2, x3, x6}, {x2, x4, x6}, {x2, x4, x7},

{x2, x5, x6}, {x2, x5, x7}

So, when G = P7, we have γ(G)= 3 and ζ(G)= 8

• n = 8: x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8

γ sets: {x1, x4, x7}, {x2, x4, x7}, {x2, x5, x7}, {x2, x5, x8}

So, when G = P8, we have γ(G)= 3 and ζ(G)= 4

• n = 9: x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8 − x9

γ sets: {x2, x5, x8}

So, when G = P9, we have γ(G)= 3 and ζ(G)= 1

• n = 10: x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8 − x9 − x10

γ sets: {x1, x3, x6, x9}, {x1, x4, x6, x9}, {x1, x4, x7, x9}, {x1, x4, x7, x10}, {x2, x3, x6, x9},

{x2, x4, x6, x9}, {x2, x4, x7, x9},{x2, x4, x7, x10}, {x2, x5, x6, x9}, {x2, x5, x7, x9},{x2, x5, x7, x10},

{x2, x5, x8, x9},{x2, x5, x8, x10}

So, when G = P10, we have γ(G)= 4 and ζ(G)= 13

• n = 11: x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8 − x9 − x10 − x11

γ sets: {x1, x4, x7, x10}, {x2, x4, x7, x10}, {x2, x5, x7, x10}, {x2, x5, x8, x10}, {x2, x5, x8, x11},

So, when G = P11, we have γ(G)= 4 and ζ(G)= 5

• n = 12: x1 − x2 − x3 − x4 − x5 − x6 − x7 − x8 − x9 − x10 − x11 − x12

γ sets: {x2, x5, x8, x11}

So, when G = P12, we have γ(G)= 4 and ζ(G)= 1.
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3.2 Brief History

The first reported instance of a related problem is thought to be the queen’s dom-

ination problem which was originally called “coefficient of external stability” in a

publication by Claude Berge in 1958. The dominating set was first used by Oystein

Ore in 1962. Ever since, there has been an increased interest in this concept and

other related problems with terms such as in “covering” and “location”. In general,

dominating set problems are concerned with testing whether γ(G) ≤ K for a given

graph G and input K; it is a classical NP-complete decision problem in computational

complexity theory. Therefore it is believed that there may be no efficient algorithm

that finds a smallest dominating set for all graphs, although there are efficient approx-

imation algorithms, as well as both efficient and exact algorithms for certain graph

classes. It is also NP-Hard to determine γ(G), given any graph G.

Further, estimates of the γ value for some graphs have also been studies.So, a lower

bound is clearly based on the neighborhood of a vertex and the set of all vertices on

a graph is by definition a dominating set. Hence, n/(1 + ∆) ≤ γ(G) ≤ n. This bound

is substantially improved for any connected graph as 2 ≤ γ(G) ≤ n/2.

3.3 Applications

Dominating sets are of practical interest in several areas. In wireless networking, dom-

inating sets are used to find efficient routes within ad-block mobile networks. They

have also been used in document summarization, and in designing secure systems

for electrical grids. Dominating sets are useful in routing problems. For instance,

how many internet routers do you need so that every computer in your business has

internet access?

The notion of dominating set can and have been extended to other graph pa-

rameters as mentioned in Chapter 5. For instance, a connected γ-set is a γ-set

whose elements induce a connected graph. Figure 3.3 is an example of tree where the

elements (black) of the γ-set form a path on 3-vertices.
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Figure 3.3: connected γ-set (in black) of a tree on 7 vertices

Thus, it is clear that only nodes (or computers) in a connected γ-set can relay

messages, reduce communication cost and redundant traffic. They can maintain and

keep routing information localized and save storage space. So, a message sent from a

circled black node shown in Figure 3.4 can reach other centers, if it is suddenly under

attack; this can be a scenario case of a back-up call by a police unit.

Figure 3.4: connected γ-set (in black) of a planar graph

Dominion counts all the γ-sets including the connected ones. There, the more γ

sets a network has the more resilient that network is to attacks. Thus, the higher the

ζ value, the less vulnerable is the network. Further, it is also clear that graphs for

which ζ = 1 have a unique dominion. In which case such graphs are more vulnerable

to cyber attacks that target that γ-set. It would be nice to have an estimate that

include the parameters ζ and γ. However, it is obvious that 1 ≤ ζ ≤ n, and for

any graph on n vertices. Moreover, it is worth noting that any derived γ-set such as

total dominating set is counted in the dominion (number). We defined these derived

dominating sets later in the Chapter 5. Now, we close this chapter with some activities

with solutions related to γ-sets and γ values, that can be introduced in a high school

curriculum.
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3.4 Activities

1. Find the γ values of the graphs in Figures 3.5 and 3.6.

Figure 3.5: Graphs (A) and (B)

Figure 3.6: Graphs (C) and (D)

2. Suppose that a company contains eleven offices connected by hallways as in-

dicated in Figure 3.7. The manager of the company wants to install top of the line

photocopy machines so that each office has a copier within their office or is near an

office that has one. Unfortunately, the company is new and funds are limited, thus

only a minimum number of photocopiers can be installed.
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Figure 3.7: Office network

Tell the manager the minimum number of photocopier machines that need to be

purchased and in which offices to place them.

3. Suppose that a contractor is building a new subdivision. The last decision that

the contractor has to make is where to place the waste receptacles. Regret- tably, the

contractor went over budget building the community center, so not every intersection

can have a waste receptacle. The contractor would like for you to determine the

number of receptacles that are needed so that, for each intersection, there is either a

receptacle or there is one at an intersection one block away. The Figure 3.8 is a street

grid of the new subdivision.
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Figure 3.8: Street grid

4. Suppose that we have a collection of small villages in Alaska. We would like to

locate radio stations in some of these villages so that messages can be broadcast to all

of the villages in the region. Since each radio station has a limited broadcasting range,

fifty miles, we need to use several stations to reach all the villages. The locations of

the ten villages are given in Figure 3.9 with the distances between the villages in

miles.

Figure 3.9: Radio Stations grid

What is the fewest number of stations that need to be constructed?
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3.5 Solutions

1. Figure A.

We can clearly notice that all the vertices form a dominating set, but we we want

to find the least number. Notice that we could choose {b, d} as a dominating set,

since b dominates itself and the vertices adjacent to it, a,c, and e. Next we notice

{b, d} dominates itself and its neighbors c and e. Other minimum dominating sets

are {a, e}, {a, d}, {c, e}, {b, e}, {b, c}, and {c, d}. So we know that we need at most

two vertices to dominate the graph, γ(G) = 2. To see that γ(G) = 2, we must show

that one vertex can not dominate the graph. To see this, note that no one vertex is

adjacent to every vertex in the graph. Hence γ(G) = 2.

Figure B.

For the graph (B), the domination number is 3. A possible dominating set is

{a, c, e}, so γ(G) ≤ 3. We know that there is a C4 subgraph is contained in the

graph, so automatically you need at least two vertices to dominate it. No matter

which two vertices of the cycle you choose, they cannot dominate the entire graph,

so γ(G) ≥ 3. Hence, γ(G) = 3.

Figure C.

For the graph (C), the domination number is 3. A possible dominating set is

{a, b, c}, so so γ(G) ≤ 3. We know that G is just a C8, so at least three vertices are

needed. Hence, γ(G) = 3.

Figure D.

For the graph (D), the domination number is 4. A possible dominating set is

{a, f, c, k}, so γ(G) ≤ 4. We know that G contains a subgraph of a K4, two P3’s,

and a K(5, 1). We know that the domination number of any complete graph is 1.

Likewise, it is easy to see that the domination number of any star is 1. However, the

placement of the P3’s in G make it impossible to dominate the entire graph G with

only one more additional vertex. Thus, γ(G) ≥ 4. Hence, γ(G) = 4.

2.

We model the problem using a graph where the vertices of our graph represent
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the different offices, and, two vertices are adjacent if the office they represent are

connected by a hallway. We need to find the smallest dominating set of the graph. The

dominating number for the graph is 4 and a dominating set consists of {A,D, F, I}.

So, now let us interpret our solution in terms of our real-world problem. We can

see (Figure 3.10) that four photocopier machines need to be purchased and placed in

office A, office D, office F , and office I.

Figure 3.10: Office network γ(G)-set

3.

We use the original map, which is a grid (graph) and highlight the γ-set as

shown in Figure 3.11. We need to find a dominating set that consists of the smallest

number of intersections for waste receptacles. Our smallest dominating set consists

of the vertices {(1, 1), (1, 5), (2, 3), (3, 1), (3, 5), (4, 3), (5, 1), (5, 5), (6, 3), (7, 1), (7, 5)}.

Now, let us interpret our solution in terms of our real-world problem. We can

see (Figure 3.11) that eleven waste receptacles need to be placed at intersections

(1.1), (1.5), (2, 3), (3, 1), (3, 5), (4, 3), (5, 1), (5, 5), (6, 3), (7, 1), and (7, 5) so that the

residents in the subdivision have a receptacle at their intersection or have a receptacle

one block away.
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Figure 3.11: Street grid γ(G)-set

4.

Once again, we need to translate the given grid into a graph model. Since we

know that that a radio station has a broadcast range of only fifty miles, we can

disregard towns that are more than fifty miles apart. Therefore we can now have the

vertices represent towns and connect two vertices by an edge whenever the towns they

represent are 50 miles or less apart. This gives us the graph shown in Figure3.12. We

want to find a set of the least number of stations which dominate all other vertices.

A possible smallest dominating set consists of {B,D,H}. Now let us interpret our

solution in terms of our real-world problem. We only need to construct three radio

stations in the towns of B,D, and H, so that all of the other towns can be reached.
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Figure 3.12: Radio grid γ(G)-set
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Chapter 4 γ and ζ Spectral Values of Some Graphs

For each graph mentioned in Chapter 2, we determine sequences of γ and ζ values as

defined in Chapter 3. These spectral values are sequentially derived from a sequence

of families of graphs as we increase their order. Throughout, we assume G is a graph

on n ≥ 2 vertices, unless stated otherwise.

4.0.1 Complete Graphs

Theorem 4.0.1. Given a complete graph Kn on n ≥ 2 vertices, the following hold:

1. γ-spectrum: {1, 1, . . . , 1}

2. γ-spectrum general form: {1}ni=1

3. ζ-spectrum: {1, 2, . . . , n}

4. ζ-spectrum general form: {i}ni=1

Proof. Assume G = (V,E) is a complete graph on n ≥ 2 vertices. Since every vertex

v ∈ V has exactly n− 1 neighbors, it is clear that any vertex u ∈ V is dominated by

v. Hence, the γ-spectral value. Further, because each vertex in V can by them self

be a dominating set, the γ-spectral values follow.

4.0.2 Cycles

Theorem 4.0.2. Given a cycle Cn on n ≥ 3 vertices, the following hold:

1. γ-spectrum: {1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, . . .}

2. γ-spectrum general form: bn
3
c, n ≥ 2.

3. ζ-spectrum: unknown
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4. ζ-spectrum general form: unknown

Proof. Assume G = (V,E) is a cycle graph on n ≥ 3 vertices. When n = 3, the result

follows since G ∼= K3. Now, for all n ≥ 3, consider e ∈ E. Delete it, in which case,

G ∼= Pn, a path on n vertices whose γ spectral values are known, following Example

3.1.4. Hence, any other γ set of G must have cardinality at least that of Pn. It is easy

to see that their cardinality is at most that of Pn, giving the result. The ζ values are

more intractable.

4.0.3 Star Trees

As discussed in Chapter 2, we focus only on the star graph on n ≥ 2 vertices.

Theorem 4.0.3. Given a Star Sn on n ≥ 2 vertices, the following hold:

1. γ-spectrum: {1, 1, . . . , 1}

2. γ-spectrum general form: {1}ni=1

3. ζ-spectrum:{1, 1, . . . , 1}

4. ζ-spectrum general form: {i}ni=1

Proof. Assume G = (V,E) is a Star on n ≥ 2 vertices. When n = 3, the middle

vertex is the only element of a dominating set. For all n ≥ 3, the vertex of maximal

degree, which is unique, is the only element of a dominating set. Hence the result.

4.0.4 Fans

Theorem 4.0.4. Given a Fan Fn on n ≥ 3 vertices, the following hold:

1. γ-spectrum: {1, 1, . . .}

2. γ-spectrum general form: {1}ni=1

3. ζ-spectrum: {3, 2, 1, . . . , 1}

4. ζ-spectrum general form: {3, 2} ∪ {1 : n ≥ 5}
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Proof. Assume G = (V,E) is a Fan on n ≥ 3 vertices. When n = 3, any of the

vertices of F3 forms a dominating set, since each has a degree 2. Hence, ζ = 3. For

n = 4, exactly two vertices (they have degrees 3). Hence, ζ = 2. For all n ≥ 5, only

the vertex of degree n − 1 dominates the remaining vertices of Fn. Hence, ζ = 1,

giving the result.

4.0.5 Wheel

Theorem 4.0.5. Given a Wheel Wn on n ≥ 4 vertices, the following hold:

1. γ-spectrum: {1, 1, . . . , 1}

2. γ-spectrum general form: {1}ni=1

3. ζ-spectrum:{1, 1, . . . , 1}

4. ζ-spectrum general form: {i}ni=1

Proof. Assume G = (V,E) is a Wheel on n ≥ 4 vertices. When n = 3, the hub, is

the vertex of maximal degree, which is unique. It is the only element of a dominating

set. Hence the result.

4.0.6 Barbell

Theorem 4.0.6. Given an n-barbell B(n) on n ≥ 3 vertices, the following hold:

1. γ-spectrum: {2, 2, 2, . . .}

2. γ-spectrum general form: {2}ni=1

3. ζ-spectrum: {4, 9, 16, . . .}

4. ζ-spectrum general form: {i2}ni=2

Proof. Assume G = (V,E) is an n-barbell on n ≥ 3 vertices. Let u and v be the

endpoints of the bridge connecting the two cliques, Kn’s. It is easy to see that u

covers one of the clique while v covers the other. Further, since any member of a Kn

covers its neighbors that form a clique, and with it, we can form a γ set when paired

with any other member from the second clique. Hence, the γ-spectrum.
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4.0.7 Generalized Barbell

Theorem 4.0.7. Given an (m,n)-barbell B(m,n) with 2 ≤ n ≤ m vertices, the

following hold:

1. γ-spectrum: {2, 2, 2, . . .}

2. γ-spectrum general form: {2}ni=1

3. ζ-spectrum: not applicable

4. ζ-spectrum general form: m× n

Proof. Assume G = (V,E) is an an (m,n)-barbell B(m,n) with 2 ≤ n ≤ m vertices.

Let u and v be the endpoints of the bridge connecting the two cliques, Km and Kn.

It is easy to see that u covers one of the clique while v covers the other. Further,

any vertex x of a Kj, with j ∈ {m,n} covers its neighbors as they form a clique. So,

with each such vertex x we can form a γ set of size m×n when paired with the other

member from the second clique. Hence, the γ-spectrum.

We list the results for the next two graphs without proof, as they are beyond the

scope of our research to prove.

4.0.8 Complete bipartite graphs

Theorem 4.0.8. Given K(m,n), a complete bipartite graph with 2 ≤ n ≤ m, the

following hold:

1. γ-spectrum: {2, 2, 2, . . . , 2}

2. γ-spectrum general form: {2}ni=1

3. ζ-spectrum: not applicable

4. ζ-spectrum general form: mn+ 1, with 2 ≤ n ≤ m.

We note that when n = 1 and m ≥ 2, ζ = 1 and when n = 1 and m = 1, we have

ζ = 2.
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4.0.9 Complete multipartite graphs

Theorem 4.0.9. Given K(m1,m2, . . . ,mk), a complete k-partite graph with mj ≥ 2

and k ≥ 2, the following hold:

1. γ-spectrum: {2, 2, 2, . . . , 2} with 2 ≤ n ≤ m

2. γ-spectrum general form: {2}ni=1.

3. ζ-spectrum: not applicable

4. ζ-spectrum general form:
(k
2)∑

i 6=j

mimj

+

 α if some mj = 2, j = 1, . . . , α

0 otherwise
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Chapter 5 Conclusion and Future Research

The notion of γ-sets and dominion can further be extended to other graphs. Moreover,

there are other types of related parameters that can be applied to our research. We

list them here, briefly.

1. Connected Dominating Set: it requires that a graph induced by a γ-set

must be connected.

2. Total Dominating Set: it requires no isolated vertices on graph induced by

a γ-set.

3. Independent Dominating Set: it requires all vertices in a γ-set to be isolated

vertices.

4. Dominating Clique: it requires all vertices in a γ-set to form a clique.

5. Red-Blue Dominating Set: it requires that the vertices in a γ-set can be

partitioned into two sets, Red and Blue, and the vertices in Red dominate those

in Blue.

Dominion includes the counting of each of the aforementioned variations of dom-
inating sets as they are γ sets. Future research can also look into those special
dominions.
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